Terms

From aHuman Wiki
Jump to: navigation, search
Artificial Intelligence Nouns

@@Home -> ArtificialIntelligenceDictionary -> terms


Common Entities

  • action
  *# continuous action
  • action selection strategy
  *# confidence based exploration (Thrun, 1999)
  *# directed exploration
  *# eps.-greedy selection
  *# error-based directed exploration
  *# frequency-based directed exploration
  *# optimism in the face of uncertainty
  *# recency-based directed exploration (Sutton, 1990)
  *# tabu search (Abramson and Wechsler, 2003)
  • activation function
  *# hyperbolic tangent activation function
  *# linear activation function
  *# logistic function
  *# monotonic activation function
  *# normal sigmoid function
  *# periodic activation function
  *# sigmoid function
  *# symmetric sigmoid function
  *# symmetric sinus activation function
  *# threshold activation function
  • agent
  *# autonomous agent
  • artificial intelligence
  • back-propagation drawbacks
  *# local minima problem
  *# moving target problem
  *# step-size problem
  • belief nets
  *# directed belief nets
  *# sigmoid belief nets
  • binary codes
  • cause
  • cascade correlation architecture (Fahlman and Lebiere, 1990)
  • conditional random fields
  • connection
  *# autoregressive connections
  *# input connections
  *# lateral connection
  *# output connections
  *# short-cut connections
  *# symmetric connections
  *# temporal connections
  *# trainable connections
  • containment function
  • damping
  • dataset
  *# labeled data
  *# noise-free data
  *# sample
  *# sequential data
  *# test set
  *# training example
  *# training patterns
  *# training data-set
  *# unbiased example
  *# unlabeled data
  *# validation data-set
  • dimensionality reduction
  *# non-linear dimensionality reduction
  • discount rate
  • directed model
  • distributed representations
  • domain-specific kernel
  • dynamic programming
  • eligibility traces
   *# replacing eligibility traces
  • energy of joint configuration
  • environment
  *# stationary environment
  • epoch
  • error value
  *# mean square error (MSE)
  • experience value
  *# discounted future experience
  *# immediate experience value
  • experience value function
  • factorial distribution
  • feature
  • generative model
  • generalization
  • goal state
  • gradient
  • greedy strategy
  • inference
  • layer
  *# input layer
  *# hidden layer
  *# layer of features
  *# output layer
  • learning rate
  • likelihood
  • local optima (for neural network)
  • log likelihood
  • log probability
  • misclassification rate
  • neural networks
  *# artificial neural network (ANN)
  *# cascading neural networks
  *# convolutional multilayer neural networks
  *# counterpropagation network
  *# deep neural networks
  *# feedforward networks
  *# fully connected neural network
  *# functional-link neural networks
  *# general regression neural network
  *# higher order networks
  *# multilayer feedforward artificial neural networks
  *# multilayer neural networks
  *# probabilistic neural network
  *# real-time recurrent learning networks
  *# recurrent backpropagation networks
  *# recurrent neural networks
  • neuron
  *# bias neuron
  *# binary neurons
  *# candidate neuron
  *# hidden neuron
  *# mean-field logistic unit
  *# output neuron
  • node (in the network)
  *# leaf node (in the network)
  *# unit
  • noise (in the data)
  • objective function
  • online inference
  • output
  *# actual output
  *# desired output
  • over-fitting
  • partial derivative
  • policy
  *# deterministic policy function
  *# optimal policy
  *# optimal deterministic policy
  *# stochastic policy function
  • posterior distribution
  *# aggregated posterior distribution
  • precision-recall curves
  • prior
  *# complementary prior
  • probability
  • probability density models
  • profit function
  • reward
  *# cumulative reward
  *# discounted future reward
  *# future reward
  *# immediate reward
  *# longterm reward
  *# short-term reward
  • reward value function
  • root mean squared error
  • second order statistics
  • selective attention approach
  • sensory input
  • shallow models
  • slackness of the bound
  • sloppy top-down specification
  • softmax function
  • state
  *# after-state
  *# continuous state
  • state-action space
  • stop function
  • structure (in the data)
  • training curve
  • value function
  *# action-value function
  *# state-value function
  • variable (for neural network)
  *# circular variables
  *# stochastic variable
  • weights
  *# frozen weights
  *# initial weights
  *# lateral weight

Named Entities

  • Adaline
  • ARTMAP Neural Networks
  *# Fuzzy ARTMAP
  *# Gaussian ARTMAP
  • Bellman Optimality Equation (Sutton and Barto, 1998)
  • Bernoulli Variables
  • Bidirectional Associative Memory (BAM)
  • Boltzmann Machine
  *# Conditional RBM model
  *# Restricted Boltzmann Machine (RBM)
  *# Semi-restricted Boltzmann Machines
  *# Temporal RBM
  • Boltzmann-Gibbs Selection
  • Deep Belief Nets
  *# Deep Autoencoders
  • Dynamic Bayes Nets
  • Elman Neural Networks
  • Finite Impulse Response (FIR) filter
  • Gaussian Processes
  • Gaussian Unit
  • Hebbian Theory
  • Hidden Markov Models (HMM)
  • Hopfield Net
  • Jordan Neural Network
  • Long Short-Term Memory (LSTM) Recurrent Network
  • Markov Decision Process (MDP)
  • Markov Environment
  • Markov Property
  • Markov State
  • Max-Boltzmann Selection
  • MNIST Test Set
  • MRF
  *# MRF-MBNN
  • Neocognitron
  • Perceptron
  • RBF Networks
  • Support Vector Machine (SVM)
  • T-step policy
  • T-step return
  • TF-IFD
  • Threshold Logical Units (TLU) Network
  • Time Delay Neural Network (TDNN)
  • UNI-SNE method